37 std::size_t num_solutions_;
38 std::string centralities_;
39 std::string set_distances_;
40 std::string ml_method_;
43 std::string options_(
const std::string & dataset)
const {
44 std::string options(
"");
45 options +=
"--threads 6 --max-num-solutions " + std::to_string(num_solutions_) +
" --centrality-method " + centralities_;
46 if (set_distances_ !=
"") {
47 options +=
" --led-method " + set_distances_;
48 options +=
" --load ../ini/" + dataset +
"_ring_" + set_distances_ +
".ini";
50 if (ml_method_ !=
"") {
52 options +=
" --ml-method " + ml_method_;
53 if (ml_method_ ==
"DNN") {
54 options +=
" --load ../ini/" + dataset + ged_method_name +
"dnn.ini";
57 options +=
" --load ../ini/" + dataset + ged_method_name +
"one_class_svm.ini";
61 options +=
" --load ../ini/" + dataset +
"_walks.ini";
64 options +=
" --load ../ini/" + dataset +
"_subgraph.ini";
70 Method(
ged::Options::GEDMethod ged_method, std::size_t num_solutions, std::string centralities,
const std::string & set_distances =
"",
const std::string ml_method =
"") :
71 ged_method_{ged_method},
72 num_solutions_{num_solutions},
73 centralities_{centralities},
74 set_distances_{set_distances},
75 ml_method_{ml_method} {
76 if (num_solutions_ <= 0) {
77 throw ged::Error(
"Invalid number of solutions.");
79 if (centralities_ !=
"NONE" and centralities_ !=
"DEGREE" and centralities_ !=
"EIGENVALUE" and centralities_ !=
"PAGERANK") {
80 throw ged::Error(
"Invalid node centralities.");
83 if (set_distances !=
"LSAPE_OPTIMAL" and set_distances !=
"LSAPE_GREEDY" and set_distances !=
"GAMMA") {
87 else if (set_distances_ !=
"") {
91 if (ml_method !=
"DNN" and ml_method !=
"ONE_CLASS_SVM") {
92 throw ged::Error(
"Invalid machine learning method.");
95 else if (ml_method_ !=
"") {
96 throw ged::Error(
"Invalid machine learning method.");
100 std::string name()
const {
101 std::stringstream name;
103 if (set_distances_ ==
"GAMMA") {
111 if (ml_method_ ==
"DNN") {
119 if (ml_method_ ==
"DNN") {
120 name <<
"PREDICTDNN";
123 name <<
"PREDICTSVM";
130 name <<
"BRANCHFAST";
150 name <<
",$(" << num_solutions_;
151 if (centralities_ ==
"NONE") {
161 double & classification_coefficient_lb,
double & classification_coefficient_ub)
const {
162 env.
set_method(ged_method_, options_(dataset));
166 std::cout <<
"\r\t" << name() <<
": " << progress_bar << std::flush;
167 std::size_t num_intra_class_runs{0};
168 std::size_t num_inter_class_runs{0};
169 double largest_lb{0.0};
170 double avg_intra_class_lb{0.0};
171 double avg_inter_class_lb{0.0};
172 double largest_ub{0.0};
173 double avg_intra_class_ub{0.0};
174 double avg_inter_class_ub{0.0};
193 num_intra_class_runs++;
198 num_inter_class_runs++;
200 progress_bar.increment();
201 std::cout <<
"\r\t" << name() <<
": " << progress_bar << std::flush;
204 avg_lb /=
static_cast<double>(num_runs);
205 avg_ub /=
static_cast<double>(num_runs);
206 avg_runtime /=
static_cast<double>(num_runs);
207 avg_intra_class_lb /=
static_cast<double>(num_intra_class_runs);
208 avg_intra_class_ub /=
static_cast<double>(num_intra_class_runs);
209 avg_inter_class_lb /=
static_cast<double>(num_inter_class_runs);
210 avg_inter_class_ub /=
static_cast<double>(num_inter_class_runs);
211 if (largest_lb > 0) {
212 classification_coefficient_lb = (avg_inter_class_lb - avg_intra_class_lb) / largest_lb;
215 classification_coefficient_lb = 0;
217 if (largest_ub > 0) {
218 classification_coefficient_ub = (avg_inter_class_ub - avg_intra_class_ub) / largest_ub;
221 classification_coefficient_ub = 0;
228 void test_on_dataset(
const std::string & dataset,
bool only_lb) {
231 std::cout <<
"\n=== " << dataset <<
" ===\n";
232 std::cout <<
"\tInitializing the environment ...\n";
234 util::setup_environment(dataset,
false, env);
237 std::vector<ged::Options::GEDMethod> ged_methods;
242 ged_methods = {
ged::Options::GEDMethod::BIPARTITE,
ged::Options::GEDMethod::STAR,
ged::Options::GEDMethod::BRANCH_UNIFORM,
ged::Options::GEDMethod::NODE,
ged::Options::GEDMethod::WALKS,
ged::Options::GEDMethod::BRANCH_FAST,
ged::Options::GEDMethod::BRANCH,
ged::Options::GEDMethod::SUBGRAPH,
ged::Options::GEDMethod::BIPARTITE_ML,
ged::Options::GEDMethod::RING,
ged::Options::GEDMethod::RING_ML};
244 std::vector<std::string> set_distances{
"GAMMA",
"LSAPE_OPTIMAL"};
245 std::vector<std::string> centralities{
"NONE",
"PAGERANK"};
246 std::vector<std::string> ml_methods{
"DNN",
"ONE_CLASS_SVM"};
247 std::vector<std::size_t> nums_solutions{1, 4, 7, 10};
248 std::vector<Method> methods;
249 for (
auto ged_method : ged_methods) {
250 for (
const auto & centrality_method : centralities) {
251 for (
auto num_solutions : nums_solutions) {
253 for (
const auto & set_distance : set_distances) {
254 methods.emplace_back(ged_method, num_solutions, centrality_method, set_distance);
258 for (
const auto & ml_method : ml_methods) {
259 methods.emplace_back(ged_method, num_solutions, centrality_method,
"", ml_method);
263 methods.emplace_back(ged_method, num_solutions, centrality_method);
270 std::string result_filename(
"../results/");
272 result_filename += dataset +
"__lsape_based_methods_LB.csv";
275 result_filename += dataset +
"__lsape_based_methods.csv";
277 std::ofstream result_file(result_filename.c_str());
278 result_file <<
"method;avg_lb;avg_ub;avg_runtime;classification_coefficient_lb;classification_coefficient_ub\n";
282 double avg_runtime{0};
283 double classification_coefficient_lb{0};
284 double classification_coefficient_ub{0};
285 for (
auto & method : methods) {
286 method.run_on_dataset(dataset, env, avg_lb, avg_ub, avg_runtime, classification_coefficient_lb, classification_coefficient_ub);
287 result_file.open(result_filename.c_str(),std::ios_base::app);
288 result_file << method.name() <<
";" << avg_lb <<
";" << avg_ub <<
";" << avg_runtime <<
";" << classification_coefficient_lb <<
";" << classification_coefficient_ub <<
"\n";
293 int main(
int argc,
char* argv[]) {
294 std::vector<std::string> datasets;
298 if (std::string(argv[i]) ==
"--lb") {
303 for (; i < argc; i++) {
304 datasets.push_back(std::string(argv[i]));
305 util::check_dataset(datasets.back());
307 if (datasets.empty()) {
308 util::setup_datasets(datasets);
310 for (
auto dataset : datasets) {
312 test_on_dataset(dataset, only_lb);
314 catch (
const std::exception & error) {
315 std::cerr << error.what() <<
". " <<
"Error on " << dataset <<
".\n";
Provides utility functions for tests of VLDB J. submission.
std::pair< GEDGraph::GraphID, GEDGraph::GraphID > graph_ids() const
Provides access to the IDs of the graphs contained in the environment.
std::vector< GEDGraph >::size_type GraphID
Type of internally used graph IDs.
void init_method()
Initializes the method specified by call to set_method().
GEDMethod
Selects the method.
const std::string & get_graph_class(GEDGraph::GraphID graph_id) const
Returns the graph class.
double get_runtime(GEDGraph::GraphID g_id, GEDGraph::GraphID h_id) const
Returns runtime.
Selects ged::BipartiteML.
double get_upper_bound(GEDGraph::GraphID g_id, GEDGraph::GraphID h_id) const
Returns upper bound for edit distance between the input graphs.
void run_method(GEDGraph::GraphID g_id, GEDGraph::GraphID h_id)
Runs the GED method specified by call to set_method() between the graphs with IDs g_id and h_id...
void set_method(Options::GEDMethod method, const std::string &options=std::string(""))
Sets the GEDMethod to be used by run_method().
Selects ged::BranchUniform.
double get_lower_bound(GEDGraph::GraphID g_id, GEDGraph::GraphID h_id) const
Returns lower bound for edit distance between the input graphs.
Provides the API of GEDLIB.