27 #ifndef SRC_METHODS_RING_IPP_ 28 #define SRC_METHODS_RING_IPP_ 33 template<
class UserNodeLabel,
class UserEdgeLabel>
34 Ring<UserNodeLabel, UserEdgeLabel>::
37 template<
class UserNodeLabel,
class UserEdgeLabel>
38 Ring<UserNodeLabel, UserEdgeLabel>::
39 Ring(
const GEDData<UserNodeLabel, UserEdgeLabel> & ged_data) :
40 LSAPEBasedMethod<UserNodeLabel, UserEdgeLabel>(ged_data),
42 led_method_{LSAPE_OPTIMAL},
43 sort_method_{COUNTING},
56 template<
class UserNodeLabel,
class UserEdgeLabel>
63 template<
class UserNodeLabel,
class UserEdgeLabel>
67 led_method_ = LSAPE_OPTIMAL;
68 sort_method_ = COUNTING;
74 template<
class UserNodeLabel,
class UserEdgeLabel>
78 if (load_config_file_()) {
79 read_params_from_file_();
83 template<
class UserNodeLabel,
class UserEdgeLabel>
87 if (not load_config_file_()) {
89 for (std::size_t level{0}; level < num_layers_; level++) {
90 lambda_.push_back(1.0 / static_cast<double>(num_layers_));
92 for (std::size_t i{0}; i < 3; i++) {
93 alpha_.push_back(1.0 / 3.0);
98 template<
class UserNodeLabel,
class UserEdgeLabel>
104 if (load_config_file_()) {
112 std::vector<NOMAD::Point> x0s;
116 std::vector<NOMAD::Point> solutions;
117 std::vector<NOMAD::Double> objectives;
119 std::cout <<
"\rNOMAD: " << progress_bar << std::flush;
124 #pragma omp parallel for if(this->num_threads_ > 1) 126 for (std::size_t i = 0; i < num_x0s_; i++) {
127 NOMAD::Display out (std::cout);
128 out.precision (NOMAD::DISPLAY_PRECISION_STD);
131 NOMAD::begin(0,
nullptr);
132 NOMAD::Parameters p(out);
133 std::vector<NOMAD::bb_output_type> bbot(3);
134 bbot[0] = NOMAD::OBJ;
137 p.set_BB_OUTPUT_TYPE(bbot);
138 p.set_DISPLAY_STATS (
"bbe ( sol ) obj");
139 p.set_DIMENSION(3 + num_layers_);
140 p.set_LOWER_BOUND(NOMAD::Point(3 + num_layers_, 0.0));
141 p.set_UPPER_BOUND(NOMAD::Point(3 + num_layers_, 1.0));
142 p.set_MAX_BB_EVAL(num_evals_);
143 p.set_DISPLAY_DEGREE(
"NO_DISPLAY");
148 Evaluator_ ev(p,
this);
149 NOMAD::Mads mads(p, &ev);
157 solutions.push_back(*mads.get_best_feasible());
158 objectives.push_back(mads.get_best_feasible()->get_f());
161 catch (NOMAD::Exception & e) {
162 throw Error(std::string(
"NOMAD error: ") + e.what());
164 NOMAD::Slave::stop_slaves(out);
171 std::cout <<
"\rNOMAD: " << progress_bar << std::flush;
176 NOMAD::Double best_objective(objectives.at(0));
177 std::size_t pos_best_solution{0};
178 for (std::size_t pos{1}; pos < objectives.size(); pos++) {
179 if (objectives.at(pos) < best_objective) {
180 best_objective = objectives.at(pos);
181 pos_best_solution = pos;
184 NOMAD::Point best_solution(solutions.at(pos_best_solution));
187 nomad_point_to_params_(best_solution, alpha_, lambda_);
190 if (outfile_ !=
"") {
191 write_params_to_file_();
195 template<
class UserNodeLabel,
class UserEdgeLabel>
199 return "[--led-method <arg>] [--sort-method <arg>] [--load <arg>] [--save <arg>] [--init-evaluations <arg>] [--init-initial-solutions <arg>] [--init-mu <arg>]";
202 template<
class UserNodeLabel,
class UserEdgeLabel>
206 if (option ==
"led-method") {
207 if (arg ==
"LSAPE_OPTIMAL") {
208 led_method_ = LSAPE_OPTIMAL;
210 else if (arg ==
"LSAPE_GREEDY") {
211 led_method_ = LSAPE_GREEDY;
213 else if (arg ==
"GAMMA") {
217 throw Error(std::string(
"Invalid argument \"") + arg +
"\" for option led-method. Usage: options = \"[--led-method LSAPE_OPTIMAL|LSAPE_GREEDY|GAMMA] [...]\"");
221 else if (option ==
"sort-method") {
222 if (arg ==
"COUNTING") {
223 sort_method_ = COUNTING;
225 else if (arg ==
"STD") {
229 throw Error(std::string(
"Invalid argument \"") + arg +
"\" for option sort-method. Usage: options = \"[--sort-method COUNTING|STD] [...]\"");
233 else if (option ==
"load") {
237 else if (option ==
"save") {
241 else if (option ==
"init-evaluations") {
243 num_evals_ = std::stoi(arg);
246 throw Error(std::string(
"Invalid argument \"") + arg +
"\" for option init-evaluations. Usage: options = \"[--init-evaluations <convertible to int greater 0>] [...]");
248 if (num_evals_ <= 0) {
249 throw Error(std::string(
"Invalid argument \"") + arg +
"\" for option init-evaluations. Usage: options = \"[--init-evaluations <convertible to int greater 0>] [...]");
253 else if (option ==
"init-initial-solutions") {
255 num_x0s_ = std::stoi(arg);
258 throw Error(std::string(
"Invalid argument \"") + arg +
"\" for option init-initial-solutions. Usage: options = \"[--init-initial-solutions <convertible to int greater 0>] [...]");
261 throw Error(std::string(
"Invalid argument \"") + arg +
"\" for option init-initial-solutions. Usage: options = \"[--init-initial-solutions <convertible to int greater 0>] [...]");
265 else if (option ==
"init-mu") {
267 mu_ = std::stod(arg);
270 throw Error(std::string(
"Invalid argument \"") + arg +
"\" for option init-mu. Usage: options = \"[--init-mu <convertible to double between 0 and 1>] [...]");
272 if (mu_ < 0 or mu_ > 1) {
273 throw Error(std::string(
"Invalid argument \"") + arg +
"\" for option init-mu. Usage: options = \"[--init-mu <convertible to double between 0 and 1>] [...]");
280 template<
class UserNodeLabel,
class UserEdgeLabel>
284 const NodeRingMap_ & rings_g = rings_.at(g.
id());
285 const NodeRingMap_ & rings_h = rings_.at(h.
id());
288 #pragma omp parallel for if(this->num_threads_ > 1) 290 for (std::size_t row_in_master = 0; row_in_master < master_problem.
num_rows(); row_in_master++) {
291 for (std::size_t col_in_master = 0; col_in_master < master_problem.
num_cols(); col_in_master++) {
292 master_problem(row_in_master, col_in_master) = compute_ring_distance_(g, h, rings_g, rings_h, alpha_, lambda_, row_in_master, col_in_master);
298 template<
class UserNodeLabel,
class UserEdgeLabel>
301 Layer_(std::size_t level) :
305 outer_edge_labels() {}
308 template<
class UserNodeLabel,
class UserEdgeLabel>
315 template<
class UserNodeLabel,
class UserEdgeLabel>
319 NOMAD::Evaluator(param),
322 template<
class UserNodeLabel,
class UserEdgeLabel>
327 template<
class UserNodeLabel,
class UserEdgeLabel>
331 eval_x(NOMAD::Eval_Point & x,
const NOMAD::Double & h_max,
bool & count_eval)
const {
338 template<
class UserNodeLabel,
class UserEdgeLabel>
341 nomad_point_to_params_(
const NOMAD::Point & x, std::vector<double> & alpha, std::vector<double> & lambda)
const {
343 for (std::size_t i{0} ; i < 3; i++) {
344 alpha.push_back(x.get_coord(i).value());
346 std::size_t max_non_zero_level{0};
347 for (std::size_t i{0} ; i < num_layers_; i++) {
348 if (x.get_coord(i + 3).value() > 0) {
349 max_non_zero_level = i;
353 for (std::size_t i{0} ; i <= max_non_zero_level; i++) {
354 lambda.push_back(x.get_coord(i + 3).value());
358 template<
class UserNodeLabel,
class UserEdgeLabel>
362 double sum_alpha {0.0};
363 for (
auto alpha = alpha_.begin(); alpha != alpha_.end(); alpha++) {
366 for (
auto alpha = alpha_.begin(); alpha != alpha_.end(); alpha++) {
369 double sum_lambda {0.0};
370 for (
auto lambda = lambda_.begin(); lambda != lambda_.end(); lambda++) {
371 sum_lambda += *lambda;
373 for (
auto lambda = lambda_.begin(); lambda != lambda_.end(); lambda++) {
374 *lambda /= sum_lambda;
378 template<
class UserNodeLabel,
class UserEdgeLabel>
381 eval_x_(NOMAD::Eval_Point & x)
const {
382 std::vector<double> alpha;
383 std::vector<double> lambda;
384 nomad_point_to_params_(x, alpha, lambda);
389 if (this->
ged_data_.is_shuffled_graph_copy(g->id())) {
393 if (this->
ged_data_.is_shuffled_graph_copy(h->id())) {
396 NodeMap matching(g->num_nodes(), h->num_nodes());
397 DMatrix lsape_instance(g->num_nodes() + 1, h->num_nodes() + 1, 0.0);
399 if (this->
ged_data_.shuffled_graph_copies_available() and (g->id() == h->id())) {
401 populate_instance_with_params_(*g, this->
ged_data_.graph(id_shuffled_graph_copy), alpha, lambda, lsape_instance);
402 lsape_solver.
solve();
404 this->
ged_data_.compute_induced_cost(*g, this->
ged_data_.graph(id_shuffled_graph_copy), matching);
407 populate_instance_with_params_(*g, *h, alpha, lambda, lsape_instance);
408 lsape_solver.
solve();
410 this->
ged_data_.compute_induced_cost(*g, *h, matching);
412 val += matching.induced_cost();
415 val /=
static_cast<double>(this->
ged_data_.num_graphs() * this->
ged_data_.num_graphs());
416 std::size_t supp_lambda{0};
417 double sum_lambda{0.0};
418 for (
auto lambda_l = lambda.begin(); lambda_l != lambda.end(); lambda_l++) {
421 sum_lambda += *lambda_l;
424 if (num_layers_ > 1 and mu_ < 1) {
425 val *= (mu_ + ((1 - mu_) * static_cast<double>(supp_lambda - 1) /
static_cast<double>(num_layers_ - 1)));
427 double sum_alpha{0.0};
428 for (
auto alpha_i = alpha.begin(); alpha_i != alpha.end(); alpha_i++) {
429 sum_alpha += *alpha_i;
431 double epsilon{0.00001};
432 x.set_bb_output(0, val);
433 x.set_bb_output(1, epsilon - sum_alpha);
434 x.set_bb_output(2, epsilon - sum_lambda);
437 template<
class UserNodeLabel,
class UserEdgeLabel>
441 rings_[graph.
id()] = NodeRingMap_();
442 for (
auto node = graph.
nodes().first; node != graph.
nodes().second; node++) {
443 build_ring_(graph, *node, rings_.at(graph.
id()));
447 template<
class UserNodeLabel,
class UserEdgeLabel>
451 std::map<GEDGraph::NodeID, int> distance_to_root;
452 for (
auto node = graph.
nodes().first; node != graph.
nodes().second; node++) {
453 distance_to_root[*node] = -1;
455 distance_to_root[root] = 0;
457 std::map<GEDGraph::EdgeID, bool> discovered_edge;
458 for (
auto edge = graph.
edges().first; edge != graph.
edges().second; edge++) {
459 discovered_edge[*edge] =
false;
462 Layer_ current_layer(0);
463 std::queue<GEDGraph::NodeID> queue;
465 while (not queue.empty()) {
468 if (static_cast<int>(current_layer.level) < distance_to_root.at(current_node)) {
469 if (sort_method_ == COUNTING) {
471 util::counting_sort(current_layer.inner_edge_labels.begin(), current_layer.inner_edge_labels.end());
472 util::counting_sort(current_layer.outer_edge_labels.begin(), current_layer.outer_edge_labels.end());
475 std::sort(current_layer.node_labels.begin(), current_layer.node_labels.end());
476 std::sort(current_layer.inner_edge_labels.begin(), current_layer.inner_edge_labels.end());
477 std::sort(current_layer.outer_edge_labels.begin(), current_layer.outer_edge_labels.end());
479 rings[root].layers.push_back(current_layer);
480 current_layer = Layer_(current_layer.level + 1);
482 current_layer.node_labels.push_back(graph.
get_node_label(current_node));
485 if (distance_to_root.at(next_node) == -1) {
486 distance_to_root[next_node] = current_layer.level + 1;
487 if (current_layer.level < num_layers_) {
488 queue.push(next_node);
491 if (not discovered_edge.at(*edge)) {
492 discovered_edge[*edge] =
true;
493 if (distance_to_root.at(current_node) == distance_to_root.at(next_node)) {
494 current_layer.inner_edge_labels.push_back(graph.
get_edge_label(*edge));
496 else if (distance_to_root.at(current_node) < distance_to_root.at(next_node)) {
497 current_layer.outer_edge_labels.push_back(graph.
get_edge_label(*edge));
500 throw Error(std::string(
"Error when building ring rooted at ") + std::to_string(root) +
501 " for graph " + std::to_string(graph.
id()) +
": dist(" +
502 std::to_string(current_node) +
") = " + std::to_string(distance_to_root.at(current_node)) +
503 " > dist(" + std::to_string(next_node) +
") = " + std::to_string(distance_to_root.at(next_node)));
508 if (led_method_ == GAMMA) {
509 if (sort_method_ == COUNTING) {
511 util::counting_sort(current_layer.inner_edge_labels.begin(), current_layer.inner_edge_labels.end());
512 util::counting_sort(current_layer.outer_edge_labels.begin(), current_layer.outer_edge_labels.end());
515 std::sort(current_layer.node_labels.begin(), current_layer.node_labels.end());
516 std::sort(current_layer.inner_edge_labels.begin(), current_layer.inner_edge_labels.end());
517 std::sort(current_layer.outer_edge_labels.begin(), current_layer.outer_edge_labels.end());
520 rings[root].layers.push_back(current_layer);
523 template<
class UserNodeLabel,
class UserEdgeLabel>
527 std::size_t max_num_layers{0};
528 for (
auto graph_rings_pair = rings_.begin(); graph_rings_pair != rings_.end(); graph_rings_pair++) {
529 for (
auto ring = graph_rings_pair->second.begin(); ring != graph_rings_pair->second.end(); ring++) {
530 max_num_layers = std::max(max_num_layers, ring->second.layers.size());
533 num_layers_ = std::min(num_layers_, max_num_layers);
536 template<
class UserNodeLabel,
class UserEdgeLabel>
540 return (infile_ !=
"");
543 template<
class UserNodeLabel,
class UserEdgeLabel>
546 init_x0s_(std::vector<NOMAD::Point> & x0s)
const {
547 std::random_device rd;
548 std::mt19937 rng(rd());
549 std::uniform_real_distribution<double> uni(0.0, 1.0);
551 NOMAD::Point x0(3 + num_layers_, 0.0);
552 bool found_new_x0{
true};
553 std::vector<double> alpha_gen;
554 std::vector<double> lambda_gen;
555 while(x0s.size() < num_x0s_) {
557 alpha_gen.push_back(0.0);
558 alpha_gen.push_back(1.0);
559 for (std::size_t i{0}; i < 2; i++) {
560 alpha_gen.push_back(uni(rng));
562 std::sort(alpha_gen.begin(), alpha_gen.end());
563 for (std::size_t i{0}; i < 3; i++) {
564 x0[i] = alpha_gen.at(i+1) - alpha_gen.at(i);
567 lambda_gen.push_back(0.0);
568 lambda_gen.push_back(1.0);
569 for (std::size_t level{0}; level < num_layers_ - 1; level++) {
570 lambda_gen.push_back(uni(rng));
572 std::sort(lambda_gen.begin(), lambda_gen.end());
573 for (std::size_t level{0}; level < num_layers_; level++) {
574 x0[level + 3] = lambda_gen.at(level + 1) - lambda_gen.at(level);
576 for (
auto old_x0 = x0s.begin(); old_x0 != x0s.end(); old_x0++) {
578 found_new_x0 =
false;
589 template<
class UserNodeLabel,
class UserEdgeLabel>
593 const std::vector<double> & alpha,
const std::vector<double> & lambda, std::size_t row_in_master, std::size_t col_in_master)
const {
596 const Ring_ & ring_i = rings_g.at(row_in_master);
597 const Ring_ & ring_k = rings_h.at(col_in_master);
598 for (std::size_t level{0}; level < lambda.size(); level++) {
599 red += lambda.at(level) * compute_substitution_cost_(ring_i, ring_k, alpha, level);
602 else if (row_in_master < g.
num_nodes()) {
603 const Ring_ & ring_i = rings_g.at(row_in_master);
604 for (std::size_t level{0}; level < lambda.size(); level++) {
605 red += lambda.at(level) * compute_deletion_cost_(ring_i, alpha, level);
608 else if (col_in_master < h.
num_nodes()) {
609 const Ring_ & ring_k = rings_h.at(col_in_master);
610 for (std::size_t level{0}; level < lambda.size(); level++) {
611 red += lambda.at(level) * compute_insertion_cost_(ring_k, alpha, level);
617 template<
class UserNodeLabel,
class UserEdgeLabel>
620 compute_substitution_cost_(
const Ring_ & ring_i,
const Ring_ & ring_k,
const std::vector<double> & alpha, std::size_t level)
const {
621 if ((ring_i.layers.size() > level) and (ring_k.layers.size() > level)) {
622 return compute_layer_distance_(ring_i.layers.at(level), ring_k.layers.at(level), alpha);
624 if (ring_i.layers.size() > level) {
625 return compute_layer_distance_(ring_i.layers.at(level), Layer_(0), alpha);
627 if (ring_k.layers.size() > level) {
628 return compute_layer_distance_(Layer_(0), ring_k.layers.at(level), alpha);
633 template<
class UserNodeLabel,
class UserEdgeLabel>
637 if (ring.layers.size() > level) {
638 return compute_layer_distance_(ring.layers.at(level), Layer_(0), alpha);
643 template<
class UserNodeLabel,
class UserEdgeLabel>
647 if (ring.layers.size() > level) {
648 return compute_layer_distance_(Layer_(0), ring.layers.at(level), alpha);
653 template<
class UserNodeLabel,
class UserEdgeLabel>
657 double node_cost{0.0};
658 double inner_edge_cost{0.0};
659 double outer_edge_cost{0.0};
661 switch (led_method_) {
663 node_cost = gamma_multiset_cost_(lhs.node_labels, rhs.node_labels,
true);
664 inner_edge_cost = gamma_multiset_cost_(lhs.inner_edge_labels, rhs.inner_edge_labels,
false);
665 outer_edge_cost = gamma_multiset_cost_(lhs.outer_edge_labels, rhs.outer_edge_labels,
false);
668 node_cost = lsape_multiset_cost_(lhs.node_labels, rhs.node_labels,
true);
669 inner_edge_cost = lsape_multiset_cost_(lhs.inner_edge_labels, rhs.inner_edge_labels,
false);
670 outer_edge_cost = lsape_multiset_cost_(lhs.outer_edge_labels, rhs.outer_edge_labels,
false);
674 std::size_t max_num_node_labels{std::max(lhs.node_labels.size(), rhs.node_labels.size())};
675 if (max_num_node_labels > 0) {
676 node_cost /=
static_cast<double>(max_num_node_labels);
678 std::size_t max_num_inner_edge_labels{std::max(lhs.inner_edge_labels.size(), rhs.inner_edge_labels.size())};
679 if (max_num_inner_edge_labels > 0) {
680 inner_edge_cost /=
static_cast<double>(max_num_inner_edge_labels);
682 std::size_t max_num_outer_edge_labels{std::max(lhs.outer_edge_labels.size(), rhs.outer_edge_labels.size())};
683 if (max_num_outer_edge_labels > 0) {
684 outer_edge_cost /=
static_cast<double>(max_num_outer_edge_labels);
687 return alpha.at(0) * node_cost + alpha.at(1) * inner_edge_cost + alpha.at(2) * outer_edge_cost;
690 template<
class UserNodeLabel,
class UserEdgeLabel>
693 lsape_multiset_cost_(
const std::vector<LabelID> & lhs,
const std::vector<LabelID> & rhs,
bool node_labels)
const {
695 if ((lhs.size() == 0) and (rhs.size() == 0)) {
699 if ((lhs.size() > 0) and (rhs.size() == 0)) {
701 for (std::size_t row{0}; row < lhs.size(); row++) {
712 if ((lhs.size() == 0) and (rhs.size() > 0)) {
714 for (std::size_t col{0}; col < rhs.size(); col++) {
726 DMatrix problem(lhs.size() + 1, rhs.size() + 1, 0.0);
728 for (std::size_t row{0}; row < lhs.size(); row++) {
738 for (std::size_t col{0}; col < rhs.size(); col++) {
748 for (std::size_t row{0}; row < lhs.size(); row++) {
749 for (std::size_t col{0}; col < rhs.size(); col++) {
751 problem(row, col) = this->
ged_data_.node_cost(lhs.at(row), rhs.at(col));
754 problem(row, col) = this->
ged_data_.edge_cost(lhs.at(row), rhs.at(col));
760 if (led_method_ == LSAPE_OPTIMAL) {
766 problem_solver.
solve();
771 template<
class UserNodeLabel,
class UserEdgeLabel>
774 gamma_multiset_cost_(
const std::vector<LabelID> & lhs,
const std::vector<LabelID> & rhs,
bool node_labels)
const {
778 if (lhs.size() < rhs.size()) {
779 double avg_ins_cost{0.0};
780 for (
auto label_rhs = rhs.begin(); label_rhs != rhs.end(); label_rhs++) {
788 avg_ins_cost /=
static_cast<double>(rhs.size());
789 cost +=
static_cast<double>(rhs.size() - lhs.size()) * avg_ins_cost;
793 if (lhs.size() > rhs.size()) {
794 double avg_del_cost{0.0};
795 for (
auto label_lhs = lhs.begin(); label_lhs != lhs.end(); label_lhs++) {
803 avg_del_cost /=
static_cast<double>(lhs.size());
804 cost +=
static_cast<double>(lhs.size() - rhs.size()) * avg_del_cost;
808 double avg_rel_cost{0.0};
809 std::size_t count_diff_labels{0};
810 for (
auto label_lhs = lhs.begin(); label_lhs != lhs.end(); label_lhs++) {
811 for (
auto label_rhs = rhs.begin(); label_rhs != rhs.end(); label_rhs++) {
812 if (*label_lhs != *label_rhs) {
815 avg_rel_cost += this->
ged_data_.node_cost(*label_lhs, *label_rhs);
818 avg_rel_cost += this->
ged_data_.edge_cost(*label_lhs, *label_rhs);
823 avg_rel_cost /=
static_cast<double>(count_diff_labels);
826 std::size_t intersection_size{0};
827 auto label_lhs = lhs.begin();
828 auto label_rhs = rhs.begin();
829 while ((label_lhs != lhs.end()) and (label_rhs != rhs.end())) {
830 if (*label_lhs == *label_rhs) {
835 else if (*label_lhs < *label_rhs) {
843 std::size_t gamma(std::min(lhs.size(), rhs.size()) - intersection_size);
845 cost +=
static_cast<double>(gamma) * avg_rel_cost;
851 template<
class UserNodeLabel,
class UserEdgeLabel>
855 const NodeRingMap_ & rings_g = rings_.at(g.
id());
856 const NodeRingMap_ & rings_h = rings_.at(h.
id());
858 for (std::size_t row_in_master = 0; row_in_master < lsape_instance.
num_rows(); row_in_master++) {
859 for (std::size_t col_in_master = 0; col_in_master < lsape_instance.
num_cols(); col_in_master++) {
860 lsape_instance(row_in_master, col_in_master) = compute_ring_distance_(g, h, rings_g, rings_h, alpha, lambda, row_in_master, col_in_master);
865 template<
class UserNodeLabel,
class UserEdgeLabel>
869 std::map<std::string, std::string> options;
870 options[
"num_layers"] = std::to_string(lambda_.size());
871 for (std::size_t i{0}; i < alpha_.size(); i++) {
872 double val{alpha_.at(i)};
873 options[
"alpha_" + std::to_string(i)] = std::to_string(val);
875 for (std::size_t i{0}; i <lambda_.size(); i++) {
876 double val{lambda_.at(i)};
877 options[
"lambda_" + std::to_string(i)] = std::to_string(val);
882 template<
class UserNodeLabel,
class UserEdgeLabel>
886 std::map<std::string, std::string> options;
888 num_layers_ = std::stoul(options.at(
"num_layers"));
890 for (std::size_t i{0}; i < 3; i++) {
891 alpha_.push_back(std::stod(options.at(
"alpha_" + std::to_string(i))));
894 for (std::size_t i{0}; i < num_layers_; i++) {
895 lambda_.push_back(std::stod(options.at(
"lambda_" + std::to_string(i))));
void set_model(const Model &model)
Makes the solver use a specific model for optimal solving.
virtual void lsape_init_() final
Initializes the method after initializing the global variables for the graphs.
std::size_t num_nodes() const
Returns the number of nodes.
std::size_t num_threads_
The number of threads to be used.
virtual void lsape_pre_graph_init_(bool called_at_runtime) final
Initializes the method at runtime or during initialization before initializing the global variables f...
This class solves LSAPE instances by calling the library lsape available at https://bougleux.users.greyc.fr/lsape/.
virtual bool lsape_parse_option_(const std::string &option, const std::string &arg) final
Parses one option that is not among the ones shared by all derived classes of ged::LSAPEBasedMethod.
std::vector< GEDGraph >::size_type GraphID
Type of internally used graph IDs.
const GEDData< UserNodeLabel, UserEdgeLabel > & ged_data_
The data on which the method is run.
NodeID head(EdgeID edge) const
Returns the head of an edge.
void solve(int num_solutions=1)
Solves the LSAPE problem instance.
virtual void lsape_set_default_options_() final
Sets all options that are not among the ones shared by all derived classes of ged::LSAPEBasedMethod t...
std::size_t num_cols() const
Returns the number of columns.
virtual std::string lsape_valid_options_string_() const final
Returns string of all valid options that are not among the ones shared by all derived classes of ged:...
void counting_sort(std::vector< LabelID >::iterator first, std::vector< LabelID >::iterator last)
Implementation of counting sort.
LabelID get_node_label(NodeID node) const
Returns the label of a given node.
void parse_config_file(const std::string &filename, std::map< std::string, std::string > &options)
Parses a configuration file.
bool compute_lower_bound_
Flag that should be set to true if and only if the method computes a lower bound. ...
LSAPESolver::Model lsape_model_
Specifies model for optimal LSAPE solver.
LabelID get_edge_label(EdgeID edge) const
Returns the label of a given edge.
std::pair< incident_edge_iterator, incident_edge_iterator > incident_edges(NodeID node) const
Provides access to all incident edges of a node.
double minimal_cost() const
Returns the cost of the computed solutions.
std::pair< node_iterator, node_iterator > nodes() const
Provides access to all nodes in the graph.
The normalized input graphs used by GEDLIB. All labels are integers.
virtual void lsape_default_post_graph_init_() final
Default initializes the method at runtime after initializing the global variables for the graphs...
constexpr LabelID dummy_label()
Returns a dummy label.
constexpr std::size_t undefined()
Returns undefined size.
Global namespace for GEDLIB.
void increment()
Increments the number of solved tasks.
virtual void lsape_init_graph_(const GEDGraph &graph) final
Initializes global variables for one graph.
void save_as_config_file(const std::string &filename, const std::map< std::string, std::string > &options)
Saves a string map as a configuration file as expected by parse_config_file().
Computes an upper bound for general edit costs.
void construct_node_map_from_solver(const Solver &solver, NodeMap &node_map, std::size_t solution_id=0)
Constructs a node map from a solution to LSAPE or LSAPE stored in a ged::LSAPESolver or a ged::LSAPSo...
void set_problem(const DMatrix *cost_matrix)
Sets the LSAPE problem instance.
LSAPESolver::GreedyMethod greedy_method_
Specifies method for greedy LSAPE solver.
std::size_t NodeID
Internally used vertex ID type.
void set_greedy_method(const GreedyMethod &greedy_method)
Makes the solver use a greedy method.
GraphID id() const
Returns the ID of the graph.
virtual void lsape_populate_instance_(const GEDGraph &g, const GEDGraph &h, DMatrix &master_problem) final
Populates the LSAPE instance.
std::pair< edge_iterator, edge_iterator > edges() const
Provides access to all edge in the graph.
std::size_t num_rows() const
Returns the number of rows.